Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process.
نویسندگان
چکیده
The ribosomal stalk is directly involved in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes the acidic components correspond to the 12-kDa P1 and P2 proteins, and the RNA binding component is the P0 protein. All these proteins are found phosphorylated in eukaryotic organisms, and previous in vitro data suggested this modification was involved in the activity of this structure. Results from mutational studies have shown that phosphorylation takes place at a serine residue close to the carboxy end of the P proteins. Modification of this serine residue does not affect the formation of the stalk and the activity of the ribosome in standard conditions but induces an osmoregulation-related phenotype at 37 degrees C. The phosphorylatable serine is part of a consensus casein kinase II phosphorylation site. However, although CKII seems to be responsible for part of the stalk phosphorylation in vivo, it is probably not the only enzyme in the cell able to perform this modification. Five protein kinases, RAPI, RAPII and RAPIII, in addition to the previously reported CKII and PK60 kinases, are able to phosphorylate the stalk proteins. A comparison of the five enzymes shows differences among them that suggest some specificity regarding the phosphorylation of the four yeast acidic proteins. It has been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data suggest that although phosphorylation is not involved in the interaction of the acidic P proteins with the ribosome, it can affect the ribosome activity and might participate in a possible ribosome regulatory mechanism.
منابع مشابه
Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae
In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...
متن کاملOptimization of Microbial Hydrogen Production from Maize Stalk Using an Isolated Strain
Experimental designs were applied for optimizing media and process parameters for hydrogen production from maize stalk hydrolyzate by a newly isolated facultative strain.Plackett-Burman design was used to identify the significant components and using this method the media components - glucose, yeast extract, malt extract, peptone, and NaCl were identified as signi...
متن کاملInvestigation of blood serum enzymes and antioxidant system of liver in grey mullet ,Mugil cephalus Linnaeus 1758, fed with different levels of Saccharomyces cerevisiae yeast
The potential use of dietary probiotics to enhance the immunity and health of aquatic animals has recently attracted intensive attention. The purpose of this study was to investigate the effect of different levels of Saccharomyces cerevisiae yeast on blood serum enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)) and antioxidant systems (S...
متن کاملPhosphorylation of Initiation Factor eIF2 in Response to Stress Conditions Is Mediated by Acidic Ribosomal P1/P2 Proteins in Saccharomyces cerevisiae
Eukaryotic cells contain an unusually large cytoplasmic pool of P1/P2 phosphoproteins, which form the highly flexible 60S subunit stalk that is required to interact with and activate soluble translation factors. In cells, cytoplasmic P1/P2 proteins are exchanged for ribosome-bound proteins in a process that can modulate ribosome function and translation. Here, we analysed different S. cerevisia...
متن کاملEffect of white spot syndrome virus on the activity of immune-related enzymes in the red claw crayfish (Cherax quadricarinatus)
In this study, we explored the pathogenic effects of white spot syndrome virus (WSSV) and effects of yeast cell wall in the red claw crayfish, Cherax quadricarinatus, by investigating the activity of enzymes related to innate immune function following artificial infection of immunized and non-immunized crayfish. Our results reveal that the activity of four enzymes, phenoloxidase (PO), peroxidas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS microbiology reviews
دوره 23 5 شماره
صفحات -
تاریخ انتشار 1999